FR
Recherche
Téléphone

VB

VB
VB_image_3d_v1
VB_image_3d_v2

Description

Le profil VB est une bague d'étanchéité constituée d'une simple cage métallique extérieure avec revêtement en élastomère sur la partie interne, et d'une lèvre primaire d'étanchéité sans ressort.

Avantages

Bonne rigidité radiale, en particuliers pour les grands diamètres
Bonne stabilité au montage, évitant les effets de rebond
Etanchéité aux fluides à forte viscosité
Lèvre d'étanchéité primaire générant de faibles frottements et de faibles générations de chaleur

Données techniques

Applications

Tous types d'applications rotatives
Machines-outils
Agriculture
Construction
Transmission
Boîtes de vitesses
Moteurs
Pompes

Matériaux

Elastomère

ACM 70 - 75 Shore A
EPDM 70 - 75 Shore A
FKM 70 - 75 Shore A
HNBR 70 - 75 Shore A
NBR 70 - 75 Shore A

Cage métallique

Acier - AISI 1010
Acier inoxydable - AISI 304
Acier inoxydable - AISI 316

Dimensions
Matériaux
Conditions d'utilisation
Conception du joint
Conception de l'arbre
Conception du logement

Dimensions

Schéma d'implantationLogement pour bague d'étanchéité - Housing Groove for shaft seal

Matériaux

Cage métallique

Le tableau ci-dessous présente les matériaux qu'il nous est possible de proposer au niveau des cages métalliques.

Application Matériau Norme Caractéristiques
Cage métallique Acier standard non allié AISI 1010
(DIN 1624)
Acier laminé à froid
Cage métallique Acier Chrome - Nickel AISI 304
(DIN 1.4301 - V2A)
Acier inoxydable standard
Cage métallique Acier Chrome - Nickel - Molybdène AISI 316
(DIN 1.4401 - V4A)
Acier inoxydable haute résistance contre la corrosion

Elastomères

ACM (Polyacrylate)

Polymère en éthylocrylate (ou butylacrylate) comportant une faible quantité de monomère nécessaire à la réticulation, l'ACM est un matériau plus résistant à la chaleur que le NBR. Il est souvent utilisé pour les boîtes de vitesses automatiques.

Résistance chimique Huiles minérales (huiles de moteur, huiles de boîte de vitesse, huiles ATF
Agents atmosphériques et ozone
Problème de compatibilité Liquides de frein avec une base de glycol (Dot 3 & 4)
Hydrocarbures aromatiques et chlorés
Eau et vapeur d'eau
Acides, alcalis, amines
Plage de température -25°C à + 150°C (pointe sur courte durée à +160°C)
-35°C / +150°C avec des ACM spéciaux
AEM (Caoutchouc d'Ethylène - Acrylate)

Copolymère d'éthylène et d'acrylate de méthyle, l'AEM est considéré comme étant plus résistant à la chaleur que l'ACM. C'est un intermédiaire entre l'ACM et le FKM de part ses caractéristiques.

Résistance chimique Liquides de refroidissement
Huiles minérales agressives
Agents atmosphériques
Eau
Problème de compatibilité Solvants aromatiques
Acides forts
Liquides de freins
Huiles de boîte de vitesse
Huiles ATF
Plage de température  - 40°C à + 150°C
CR (Polychloroprène)

Cet élastomère à base de CR est employé pour l'industrie du froid, et pour les circuits de ventilation. Ce chloroprène a été le premier caoutchouc synthétique développé et commercialisé.

Résistance chimique Huiles minérales paraffiniques
Huiles de silicone et de graisses
Eau et solvants d'eau à basse température
Fluides frigorigènes
Ammoniac
Dioxyde de carbone
Agents atmosphériques et ozone
Résistance limitée chimiquement Huiles minérales naphténiques
Hydrocarbures aliphatiques (propane, butane, pétrole)
Liquides de frein avec une base de glycol
Problème de compatibilité Hydrocarbures aromatiques (benzène)
Hydrocarbures chlorés (trichloréthylène)
Solvants polaires (cétone, acétone, acide acétique, éthylène-ester)
Plage de température -40°C / +100°C (pointe sur courte durée à +120°C)
EPDM (Caoutchouc d'Ethylène - Propylène - Diène)

Copolymère d'éthylène-propylène-diène, l'EPDM est couramment utilisé pour la robinetterie eau chaude, pour les circuits de refroidissement, pour les circuits de freinage, pour les lave-vaisselle, et pour les machines à laver.

Résistance chimique Eau chaude et vapeur jusqu'à +150°C
Liquides de frein avec une base de glycol (Dot 3 & 4) et liquides de frein avec une base de silicone (Dot 5)
Acides organiques et inorganiques
Agents de nettoyage, alcalis de sodium et de potassium
Fluides hydrauliques (HFD-R)
Huiles de silicone et graisses
Solvants polaires (alcools, les cétones, les esters)
Agents atmosphériques et ozone
Problème de compatibilité Huiles minérales et graisses
Hydrocarbures
Faible imperméabilité au gaz
Plage de température -45°C / +150°C (pointe sur courte durée à +175°C)
FFKM (Caoutchouc Perfluoré)

Le FFKM présente les meilleures caractéristiques en terme de résistance aux températures élevées, avec une excellente inertie chimique. Cet élastomère à base de FKM est très souvent employé pour l'hydraulique et le pneumatique à température élevée, pour la robinetterie industrielle, pour l'injection / carburation, pour les joints moteur, pour le vide poussé.

Résistance chimique Hydrocarbures aliphatiques et aromatiques
Solvants polaires (cétones, esters, éthers)
Acides organiques et inorganiques
Eau et vapeur d'eau
Vide poussé
Problème de compatibilité Réfrigérants (R11, R12, R13, R113, R114, etc.)
PFPE
Plage de température -15°C / +320°C
FKM (Caoutchouc Fluoré)

En fonction de leur structure et de leur teneur en fluor, les élastomères fluorés peuvent varier en terme de résistance chimique et de résistance au froid. Cet élastomère à base de FKM est très souvent employé pour l'hydraulique et le pneumatique à température élevée, pour la robinetterie industrielle, pour l'injection / carburation, pour les joints de moteur, pour le vide poussé.

Résistance chimique Huiles minérales et graisses, huiles ASTM n°1, IRM 902 et IRM 903.
Fluides difficilement inflammables (HFD)
Huiles de silicone et graisses
Huiles minérales et végétales et graisses
Hydrocarbures aliphatiques (propane, butane, pétrole)
Hydrocarbures aromatiques (benzène, toluène)
Hydrocarbures chlorés (trichloréthylène)
Essence (y compris à haute teneur en alcool)
Agents atmosphériques et ozone
Problème de compatibilité Liquides de frein avec une base de glycol
Gaz ammoniac
Acides organiques à faible poids moléculaire (acides formiques et acétiques)
Plage de température -20°C / +200°C (pointe sur courte durée à +230°C)
-40°C / +200°C avec des FKM spéciaux
FVMQ (Caoutchouc Fluorosilicone)

Le FVMQ présente des propriétés mécaniques et physiques très semblables à celles du VMQ. Toutefois, le FVMQ offre une meilleure résistance au carburant et aux huiles minérales. Cependant, le résistance à l'air chaud est moins bonne que pour le VMQ.

Résistance chimique Huiles minérales aromatiques (huile IRM 903)
Carburants
Hydrocarbures aromatiques à bas poids moléculaire
(benzène, toluène)
Plage de température -70°C / +175°C
HNBR (Caoutchouc Butadiène - Acrylonitrile Hydrogéné)

Cet élastomère à base de HNBR est obtenu par hydrogénation sélective des groupes butadiène du NBR. Il est couramment employé pour la direction assistée, et pour la climatisation.

Résistance chimique Hydrocarbures aliphatiques
Huiles minérales et végétales et graisses
Fluides difficilement inflammables (HFA, HFB et HFC)
Acides dilués, bases et solutions salines à température modérée
Eau et vapeur d'eau jusqu'à +150°C
Agents atmosphériques et ozone
Problème de compatibilité Hydrocarbures chlorés
Solvants polaires (cétones, esters et éthers)
Acides forts
Plage de température -30°C / +150°C (pointe sur courte durée à +160°C)
-40°C / +150°C avec des HNBR spéciaux
NBR (Caoutchouc Butadiène - Acrylonitrile)

Caoutchouc nitrile (NBR) est le terme général pour l'acrylonitrile butadiène copolymère. La teneur en ACN peut varier entre 18% à 50%. Plus la teneur en acrylonitrile est importante, meilleure est la résistance à l'huile et au carburant. A l'inverse, l'élasticité et la déformation rémanente à la compression sont moins bonnes. Le NBR présente de bonnes propriétés mécaniques et une bonne résistance à l'usure. Cependant sa tenue aux agents atmosphériques et à l'ozone est relativement faible.

Résistance chimique Hydrocarbures aliphatiques (propane, butane, le pétrole, le carburant diesel)
Huiles minérales et graisses
Fluides difficilement inflammables (HFA, HFB et HFC)
Acides dilués, solutions alcalines et salines à basses températures
Eau (jusqu'à +100°C max)
Problème de compatibilité Carburants à haute teneur aromatique
Hydrocarbures aromatiques (benzène)
Hydrocarbures chlorés (trichloréthylène)
Solvants polaires (cétone, acétone, acide acétique, éthylène-ester)
Acides forts
Liquides de frein avec une base de glycol
Agents atmosphériques et ozone
Plage de température -30°C / +100°C (pointe sur courte durée à +120°C)
-40°C / +100°C avec des NBR spéciaux
VMQ (Caoutchouc Silicone : Polysiloxane - Vinyle - Méthyle)

Cet élastomère à base de FVMQ est très souvent employé pour la carburation.

Résistance chimique Huiles animales et végétales et graisses
Eau à température modérée
Solutions salines diluées
Agents atmosphériques et ozone
Problème de compatibilité Vapeur surchauffée de l'eau jusqu'à +120°C
Hydrocarbures chlorés à faible poids moléculaire (trichloréthylène)
Hydrocarbures aromatiques (benzène, toluène)
Plage de température -60°C / +200°C  (pointe sur courte durée à +230°C)

Le tableau ci-dessous donne un aperçu sur les caractéristiques physiques, chimiques et mécaniques pour chacun des matériaux.

Caractéristiques / Matériaux ACM AEM CR EPDM FFKM FKM FVMQ HNBR NBR VMQ
Résistance à l'abrasion 2 3 2 2 4 2 4 2 2 4
Résistance aux acides 4 3 2 2 1 1 3 1 3 3
Résistance chimique 4 2 2 1 1 1 1 2 2 2
Résistance au froid 4 2 2 2 3 4 2 2 2 2
Propriétés dynamiques 3 3 3 2 3 2 4 1 2 4
Propriétés électriques 3 3 3 2 1 4 1 3 3 1
Résistance à la flamme 4 4 2 4 1 1 2 4 4 3
Résistance à la chaleur 1 1 2 2 1 1 1 1 2 1
Imperméabilité 1 1 2 2 2 2 4 2 2 4
Résistance à l'huile 1 3 2 4 1 1 2 1 1 2
Résistance à l'ozone 1 1 2 1 1 1 1 2 4 1
Résistance à la déchirure 2 3 3 1 4 3 4 2 2 4
Résistance à la traction 3 2 2 1 2 1 3 1 2 4
Résistance à l'eau / vapeur 4 4 3 1 2 3 3 1 2 3
Résistance aux agents atmosphériques 1 1 1 1 1 1 1 2 3 1

1. Propriétés excellentes    2. Bonnes propriétés    3. Propriétés moyennes    4. Mauvaises propriétés

Compatibilité chimique

Un catalogue « Guide de compatibilité chimique » est téléchargeable dans la rubrique Documentation. Egalement, vous pouvez utiliser gratuitement notre outil en ligne « Compatibilité chimique ».

Ces deux supports vous offrent la possibilité de mesurer le comportement de nos matériaux en contact avec la plupart des fluides existants. Les données affichées sont le résultat de tests minutieux à température ambiante et tiennent compte des dernières publications. Les résultats de tests ne peuvent être perçus comme étant représentatifs à 100% de la réalité en raison des spécificités particulières de votre application. En effet, les tests effectués ne prennent pas en compte les additifs et impuretés pouvant exister dans des conditions réelles d'utilisation ni même les températures à des niveaux élevés possibles. D'autres paramètres peuvent aussi altérer le comportement de nos matériaux tels que la dureté, la rémanence, l'abrasion, etc. Nous vous recommandons donc d'effectuer vos propres tests afin de confirmer la compatibilité de nos matériaux en fonction de votre application spécifique. Notre équipe technique se tient à votre disposition pour tout complément d'information.

Conditions d'utilisation

Vitesse

Le tableau ci-dessous indique les rapports entre la vitesse linéaire, la vitesse de rotation et le matériau préconisé.

Vitesse admissible pour bague d'étanchéité sans ressort

Calcul de la vitesse linéaire :

v (m/s) = [Ø arbre (mm)  x  vitesse (tr/min)  x  π]  /  60.000

Pression

Les bagues d'étanchéité standard avec lèvre d'étanchéité primaire sans ressort sont exclusivement utilisées sans pression.

Pour une utilisation sous pression entre 0,02 et 0,05 MPa maxi, il est préférable de s'orienter vers des bagues d'étanchéité avec ressort.

Pour des pressions encore plus élevées, nous vous conseillons de vous référer aux bagues d'étanchéité haute pression type SCHP - TCHP qui, de par leur conception particulière (lèvre d'étanchéité plus courte, manchette en élastomère plus épaisse, cage métallique plus proche de l'arbre), peuvent supporter des pressions allant jusqu'à 0,1 MPa avec des vitesses réduites à 0,3 m/s.

Température

Le tableau ci-dessous informe sur les limites de température selon les matériaux et les fluides utilisés.

Fluides en contact Température maximum en fonction des matériaux
ACM AEM EPDM FKM HNBR NBR VMQ
Huiles minérales Huiles pour moteurs +130°C +130°C - +170°C +130°C +100°C +150°C
Huiles pour boîtes de vitesse +120°C +130°C - +150°C +110°C +80°C +130°C
Huiles pour engrenages hypoïdes +120°C +130°C - +150°C +110°C +80°C -
Huiles ATF +120°C +130°C - +170°C +130°C +100°C -
Huiles hydrauliques +120°C +130°C   +150°C +130°C +90°C -
Graisses - +130°C - - +100°C +90°C -
Fluides difficilement
inflammables
Groupe HFA - Emulsion avec plus de 80% d'eau - - - - +70°C +70°C +60°C
Groupe HFB - Solution inverse (eau dans l'huile) - - - - +70°C +70°C +60°C
Groupe HFC - Solution aqueuse de polymères - - +60°C - +70°C +70°C -
Groupe HFD - Fluides de synthèse sans eau - - - +150°C - - -
Autres fluides Fuel de chauffage EL + L - - - - +100°C +90°C -
Air +150°C +150°C +150°C +200°C +130°C +90°C +200°C
Eau - - +150°C +100°C +100°C +90°C -
Eau lessivelle - - +130°C +100°C +100°C +100°C -
Plage de température Min. -25°C -40°C -45°C -20°C -30°C -30°C -60°C
Max. +150°C +150°C +150°C +200°C +150°C +100°C +200°C

La lèvre du joint pour arbre tournant subit une température plus élevée du fait de la rotation de l'arbre, de la pression et du frottement plus important exercés sur les parties mécaniques. Il est donc nécessaire de procéder à une bonne lubrification afin de permettre une meilleure évacuation de la chaleur et ainsi limiter les hausses de température pour les parties en frottement.

Par définition, la température au niveau de l'arête d'étanchéité s'élève lorsque la vitesse de rotation (et donc la vitesse linéaire) ainsi que le diamètre de l'arbre augmentent. Le graphique ci-dessous donne un aperçu sur le niveau d'élévation de température (en °C) au point de contact de la lèvre d'étanchéité.

Elévation de la température au point de contact de la lèvre de la bague d'étanchéité en fonction de la vitesse de l'arbre

Elévation de la température au point de contact de la lèvre de la bague d'étanchéité en fonction du diamètre d'arbre

Fluides

Graisses

Les graisses sont appliquées généralement sur des roulements, etc. et demandent une adaptation spécifique pour favoriser les conditions de fonctionnement du joint pour arbre tournant. Afin d'éviter que la lèvre du joint ne subisse des pressions plus importantes que prévues, nous recommandons d'orienter la bague à lèvre sur un côté du palier de telle sorte que la lèvre ne soit pas détruite de manière prématurée. Nous conseillons aussi de réduire de 50% la vitesse de rotation sous une lubrification à la graisse du fait de conditions moins favorables pour l'évacuation de la chaleur de frottement.

Conception du joint

Tolérance du diamètre extérieur du joint (ØD)

Le tableau ci-dessous informe du pré-serrage des bagues d'étanchéité sur le diamètre du logement selon la norme ISO 6194-1.

Diamètre d'alésage
ØD1 (mm)
Tolérances sur le diamètre extérieur ØD de la bague Tolérance de circularité
Cage métallique apparente Revêtement en élastomère Revêtement avec bossage Cage métallique apparente Revêtement en élastomère
ØD1 ≤ 50,0 +0,10 / +0,20 +0,15 / +0,30 +0,20 / +0,40 0,18 0,25
50,0 < ØD1 ≤ 80,0 +0,13 / +0,23 +0,20 / +0,35 +0,25 / +0,45 0,25 0,35
80,0 < ØD1 ≤ 120,0 +0,15 / +0,25 +0,20 / +0,35 +0,25 / +0,45 0,30 0,50
120,0 < ØD1 ≤ 180,0 +0,18 / +0,28 +0,25 / +0,45 +0,30 / +0,55 0,40 0,65
180,0 < ØD1 ≤ 300,0 +0,20 / +0,30 +0,25 / +0,45 +0,30 / +0,55 0,25% de ØD  0,80
300,0 < ØD1 ≤ 500,0 +0,23 / +0,35 +0,30 / +0,55 +0,35 / +0,65 0,25% de ØD 1,00
500,0 < ØD1 ≤ 630,0 +0,23 / +0,35 +0,35 / +0,65 +0,40 / +0,75 - -
630,0 < ØD1 ≤ 800,0 +0,28 / +0,43 +0,40 / +0,75 +0,45 / +0,85 - -

Tolérance du diamètre intérieur du joint (Ød)

Libre et sans contrainte, le diamètre intérieur de la lèvre d'étanchéité est toujours plus petit que le diamètre de l'arbre. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre de l'arbre, on peut considérer de manière générale que le diamètre de la lèvre d'étanchéité est inférieur entre 0,8 et 3,5 mm.

Conception de l'arbre

Implantation arbre pour bague d'étanchéité

Matériau de l'arbre

Les matériaux appropriés sont :

  • les aciers courants dans la construction mécanique de type C35 et C45
  • les aciers inoxydables de type 1.4300 et 1.4112 pour l'étanchéité à l'eau
  • des projections de métal appliquées par lance plasma
  • le graphite
  • la fonte malléable
  • les matériaux avec un revêtement appliqué par les procédés CVD et PVD

Ne sont pas appropriés :

  • les couches de chrome solidifiées du fait de l'usure non uniforme
  • les matières plastiques du fait de la faible conductivité thermique qui peut entraîner une perturbation du transport de la chaleur, une augmentation de la température au niveau des zones de frottement avec la bague d'étanchéité, et aussi potentiellement un ramollissement

Dureté de l'arbre

La dureté de l'arbre va dépendre de la vitesse linéaire (en m/s) et du niveau de pollution.

Vitesse de rotation Dureté en HRC
v ≤ 4,0 m/s 45 HRC
4,0 < v  ≤ 10,0 m/s 55 HRC
v > 10,0 m/s 60 HRC

Etats de surface

La qualité de surface de l'arbre doit tenir compte des recommandations ci-dessous.

Conditions standard :

  • Ra = 0,2 à 0,8 µm et 0,1 µm pour les applications rigoureuses
  • Rz = 1,0 à 4,0 µm
  • Rmax ≤ 6,3 µm

Tolérance de l'arbre

L'arbre doit être de tolérance h11 selon la norme ISO 286-2

Diamètre de l'arbre
Ød1 (mm)
Tolérance
h11 (mm)
Ød1 ≤ 3,0 -0,060 / 0
3,0 < Ød1 ≤ 6,0 -0,075 / 0
6,0 < Ød1 ≤ 10,0 -0,090 / 0
10,0 < Ød1 ≤ 18,0 -0,110 / 0
18,0 < Ød1 ≤ 30,0 -0,130 / 0
30,0 < Ød1 ≤ 50,0 -0,160 / 0
50,0 < Ød1 ≤ 80,0 -0,190 / 0
80,0 < Ød1 ≤ 120,0 -0,220 / 0
120,0 < Ød1 ≤ 180,0 -0,250 / 0
180,0 < Ød1 ≤ 250,0 -0,290 / 0
250,0 < Ød1 ≤ 315,0 -0,320 / 0
315,0 < Ød1 ≤ 400,0 -0,360 / 0
400,0 < Ød1 ≤ 500,0 -0,400 / 0

Chanfrein et Rayon

Pour ne pas altérer la lèvre primaire de la bague d'étanchéité lors du montage, il est vivement conseillé de prévoir un chanfrein sur l'arbre. Veuillez-vous référer au tableau ci-dessous.

Diamètre de l'arbre
Ød1 (mm)
Diamètre du chanfrein
Ød3 (mm)
Rayon
R (mm)
Ød1 ≤ 10,0 Ød1 - 1,50 2,00
10,0 < Ød1 ≤ 20,0 Ød1 - 2,00 2,00
20,0 < Ød1 ≤ 30,0 Ød1 - 2,50 3,00
30,0 < Ød1 ≤ 40,0 Ød1 - 3,00 3,00
40,0 < Ød1 ≤ 50,0 Ød1 - 3,50 4,00
50,0 < Ød1 ≤ 70,0 Ød1 - 4,00 4,00
70,0 < Ød1 ≤ 95,0 Ød1 - 4,50 5,00
95,0 < Ød1 ≤ 130,0 Ød1 - 5,50 6,00
130,0 < Ød1 ≤ 240,0 Ød1 - 7,00 8,00
240,0 < Ød1 ≤ 500,0 Ød1 - 11,00 12,00

Battement de l'arbre et Excentricité

Le battement de l'arbre correspond à une déviation entre l'axe réel de l'arbre et l'axe théorique de rotation. Il est important de réduire au maximum le battement de l'arbre en positionnant la bague d'étanchéité au plus près du roulement.

L'arbre et le logement doivent être montés centrés l'un par rapport à l'autre afin d'éliminer toute charge radiale unilatérale au niveau de la lèvre d'étanchéité de la bague.

Battement de l'arbre et excentricité pour bague d'étanchéité

Usinage de l'arbre

L'usinage correct de l'arbre est un élément primordial pour un bon fonctionnement du système d'étanchéité.

  • Rectification en plongée : méthode d'usinage privilégiée assurant l'absence de stries sur l'arbre (0 +/- 0,05°)
  • Tournage : adapté sur des arbres utilisés avec un sens de rotation unidirectionnel

Directives d'usinage pour la rectification des surfaces

Paramètres Exigence
Vitesse de la pièce à usiner 30 à 300 tr/min
Vitesse de la meule 1500 à 1700 tr/min
Avance de dressage < 0,02 mm/tour
Outil de dressage diamant de dressage à grains multiples, diamant de dressage à un seul grain
Avance de la meule environ 0,02 mm
Durée d'étincelage étincelage complet, 30 sec. mini
Profondeur de passe > Rmax de l'ancienne opération d'usinage
Coaxialité de l'outil et de la pièce à usiner la meilleure possible

Conception du logement

Implantation logement pour bagues d'étanchéité

Etat de surface

La qualité de surface du logement doit tenir compte des recommandations ci-dessous.

Conditions standard pour les bagues avec cage métallique apparente :

  • Ra = 0,8 à 3,2 µm
  • Rz = 6,3 à 16,0 µm
  • Rmax ≤  16,0 µm

Tolérance du diamètre d'alésage du logement

Le diamètre d'alésage du logement doit être de tolérance H8 selon la norme ISO 286-2

Diamètre d'alésage
ØD1 (mm)

Tolérance
H8 (mm)

3,0 < ØD1 ≤ 6,0 0 / +0,018
6,0 < ØD1 ≤ 10,0 0 / +0,022
10,0 < ØD1 ≤ 18,0 0 / +0,027
18,0 < ØD1 ≤ 30,0 0 / +0,033
30,0 < ØD1 ≤ 50,0 0 / +0,039
50,0 < ØD1 ≤ 80,0 0 / +0,046
80,0 < ØD1 ≤ 120,0 0 / +0,054
120,0 < ØD1 ≤ 180,0 0 / +0,063
180,0 < ØD1 ≤ 250,0 0 / +0,072
250,0 < ØD1 ≤ 315,0 0 / +0,081
315,0 < ØD1 ≤ 400,0 0 / +0,089
400,0 < ØD1 ≤ 500,0 0 / +0,097
500,0 < ØD1 ≤ 630,0 0 / +0,110

Dimensions de la largeur du logement

Le tableau ci-dessous informe sur la largeur de gorge et le rayon préconisée.

Hauteur
H1
Largeur Rayon
R2 max
L2min (H1 x 0,85) L1min (H1+0,3)
7,00 5,95 7,30 0,50
8,00 6,80 8,30
10,00 8,50 10,30
12,00 10,30 12,30 0,70
15,00 12,75 15,30
20,00 17,00 20,30
106 dimensions trouvées
VB 5x9x2
Demande standard
5,00 9,00 2,00
VB 6x10x2
Demande standard
6,00 10,00 2,00
VB 6x12x2
Demande standard
6,00 12,00 2,00
VB 7x11x2
Demande standard
7,00 11,00 2,00
VB 8x12x3
Demande standard
8,00 12,00 3,00
VB 8x14x4
Demande standard
8,00 14,00 4,00
VB 9x13x3
Demande standard
9,00 13,00 3,00
VB 10x14x3
Demande standard
10,00 14,00 3,00
VB 10x15x3
Demande standard
10,00 15,00 3,00
VB 10x16x4
Demande standard
10,00 16,00 4,00
VB 10x17x3
Demande standard
10,00 17,00 3,00
VB 11x15x3
Demande standard
11,00 15,00 3,00
VB 11x17x3
Demande standard
11,00 17,00 3,00
VB 12x16x3
Demande standard
12,00 16,00 3,00
VB 12x18x3
Demande standard
12,00 18,00 3,00
VB 12x18x5
Demande standard
12,00 18,00 5,00
VB 12x19x3
Demande standard
12,00 19,00 3,00
VB 12x20x5
Demande standard
12,00 20,00 5,00
VB 13x20x5
Demande standard
13,00 20,00 5,00
VB 13x32x10,5
Demande standard
13,00 32,00 10,50
VB 14x18x3
Demande standard
14,00 18,00 3,00
VB 14x20x3
Demande standard
14,00 20,00 3,00
VB 14x22x3
Demande standard
14,00 22,00 3,00
VB 14x22x4
Demande standard
14,00 22,00 4,00
VB 14x24x4
Demande standard
14,00 24,00 4,00
VB 15x19x3
Demande standard
15,00 19,00 3,00
VB 15x21x2
Demande standard
15,00 21,00 2,00
VB 15x21x3
Demande standard
15,00 21,00 3,00
VB 15x22x4
Demande standard
15,00 22,00 4,00
VB 15x32x6
Demande standard
15,00 32,00 6,00
VB 16x22x3
Demande standard
16,00 22,00 3,00
VB 16x24x3
Demande standard
16,00 24,00 3,00
VB 16x24x4
Demande standard
16,00 24,00 4,00
VB 16x30x4,5
Demande standard
16,00 30,00 4,50
VB 17x23x3
Demande standard
17,00 23,00 3,00
VB 17x25x5
Demande standard
17,00 25,00 5,00
VB 18x24x4
Demande standard
18,00 24,00 4,00
VB 18x26x4
Demande standard
18,00 26,00 4,00
VB 19x27x4
Demande standard
19,00 27,00 4,00
VB 20x26x4
Demande standard
20,00 26,00 4,00
VB 20x28x4
Demande standard
20,00 28,00 4,00
VB 22x28x4
Demande standard
22,00 28,00 4,00
VB 22x30x4
Demande standard
22,00 30,00 4,00
VB 22x32x3
Demande standard
22,00 32,00 3,00
VB 25x32x4
Demande standard
25,00 32,00 4,00
VB 25x32x5
Demande standard
25,00 32,00 5,00
VB 25x33x4
Demande standard
25,00 33,00 4,00
VB 25x34x5
Demande standard
25,00 34,00 5,00
VB 25x35x4
Demande standard
25,00 35,00 4,00
VB 25x35x5
Demande standard
25,00 35,00 5,00
 1 2 3