FR
Recherche
Téléphone

BECA 804

BECA 804
beca_804_3d_v1
beca_804_3d_v2

Description

Le profil BECA 804 est une bague d'étanchéité constituée d'une lèvre primaire en PTFE chargé, d'un contre joint en élastomère, et d'une cage métallique.

Avantages

Excellente inertie chimique
Utilisation possible dans l'industrie alimentaire
Très bon coefficient de frottement, pas d'effet stick-slip
Diamètre extérieur usiné pour un montage précis dans le logement

Données techniques

Température

-60°C / +200°C

Pression

0,5 MPa

Vitesse

50 m/s

Applications

Moteurs
Vilebrequins
Alimentaire

Matériaux

Lèvre d'étanchéité

PTFE vierge
PTFE chargé Verre
PTFE chargé Carbone

Cage métallique

Acier - AISI 1010
Acier inoxydable - AISI 304
Acier inoxydable - AISI 316

Dimensions
Matériaux
Conditions d'utilisation
Conception du joint
Conception de l'arbre
Conception du logement

Dimensions

Schéma d'implantationLogement pour bague d'étanchéité - Housing Groove for shaft seal

Matériaux

Cage métallique

Le tableau ci-dessous présente les matériaux qu'il nous est possible de proposer au niveau des cages métalliques.

Application Matériau Norme Caractéristiques
Cage métallique Acier standard non allié AISI 1010
(DIN 1624)
Acier laminé à froid
Cage métallique Acier Chrome - Nickel AISI 304
(DIN 1.4301 - V2A)
Acier inoxydable standard
Cage métallique Acier Chrome - Nickel - Molybdène AISI 316
(DIN 1.4401 - V4A)
Acier inoxydable haute résistance contre la corrosion

PTFE

Le PTFE est un polymère thermoplastique se composant de tétrafluoroéthylène et présentant des propriétés exceptionnelles - coefficient de frottement très faible (frottement d'adhérence et de glissement presque égaux), physiologiquement neutre par des températures jusqu'à +200°C, propriétés d'isolation électrique excellentes, compatibilité chimique avec la plupart des fluides excellente. En revanche, ce matériau étant plastique et non élastique, il ne peut remplacer facilement les bases élastomères.

Conditions d'utilisation

Vitesse

Le tableau ci-dessous indique les rapports entre la vitesse linéaire, la vitesse de rotation et le matériau préconisé.

Rapport entre la vitesse de rotation, le diamètre de l'arbre et la matériau pour les bagues d'étanchéité standard

Calcul de la vitesse linéaire :
v (m/s) = [Ø arbre (mm) x vitesse (tr/min) x π] / 60.000

La vitesse linéaire ne peut excéder 50 m/s.

Température

Le tableau ci-dessous informe sur les limites de température selon le PTFE et les fluides utilisés.

Fluides en contact Température maxi en fonction des matériaux
PTFE
Huiles minérales Huiles pour moteurs +150°C
Huiles pour boîtes de vitesse +150°C
Huiles pour engrenages hypoïdes +150°C
Huiles ATF +150°C
Huiles hydrauliques +150°C
Graisses +150°C
Fluides difficilement
inflammables
Groupe HFA - Emulsion avec plus de 80% d'eau +
Groupe HFB - Solution inverse (eau dans l'huile) +
Groupe HFC - Solutions aqueuses de polymères +
Groupe HFD - Fluides de synthèse sans eau +150°C
Autres fluides Fuel de chauffage EL + L +
Air +150°C
Eau +
Eau lessivelle +
Plage de température Min. -60°C
Max. +200°C

+ : résistant mais non couramment employé avec ces fluides

Fluides

Huiles minérales

De manière générale, ce type d'huile comporte peu d'additifs et est donc parfaitement adéquate avec l'ensemble des élastomères utilisé pour les joints pour arbre tournant. On retrouve les huiles suivantes pour les applications tournantes :

  • huiles de moteurs
  • huiles de boîtes de vitesses
  • huiles hypoïdes
  • huiles ATF pour les boîtes de vitesses automatiques
  • huiles de transmissions
Huiles synthétiques

Ce type d'huile est utilisé pour améliorer différentes caractéristiques telles que la résistance au vieillissement, la tenue aux températures élevées, la viscosité, etc. et présente une bonne compatibilité avec la plupart des élastomères utilisés pour les joints pour arbre tournant. Des tests doivent pourtant être effectués au préalable pour mesurer le degré de compatibilité de ce type d'huile avec les matières utilisées. Parmi les huiles synthétiques, on retrouve :

  • les liquides de freins
  • les fluides pour boîtes de vitesses automatiques
  • les liquides pour les suspensions
  • les liquides pour les systèmes de direction
  • les liquides pour les transmissions hydrauliques
Les huiles hypoïdes

Ce type d'huile contient des composants spéciaux tels que les additifs EP. Ces derniers permettent de favoriser la lubrification et limiter ainsi tout grippage au niveau des roulements par exemple. Ces additifs, sous l'effet de la chaleur, vont avoir tendance à provoquer des dépôts sur la lèvre d'étanchéité. C'est pourquoi, nous conseillons d'utiliser les joints pour arbre tournant avec une lèvre d'étanchéité comportant des stries de refoulement afin de limiter l'augmentation de la température et de réduire surtout ces dépôts éventuels de calamine.

Graisses

Les graisses sont appliquées généralement sur des roulements, etc. et demandent une adaptation spécifique pour favoriser les conditions de fonctionnement du joint pour arbre tournant. Afin d'éviter que la lèvre du joint ne subisse des pressions plus importantes que prévues, nous recommandons d'orienter la bague à lèvre sur un côté du palier de telle sorte que la lèvre ne soit pas détruite de manière prématurée. Nous conseillons aussi de réduire de 50% la vitesse de rotation sous une lubrification à la graisse du fait de conditions moins favorables pour l'évacuation de la chaleur de frottement.

Fluides agressifs

Il est déterminant de bien choisir le bon matériau qui résistera le mieux face aux différents fluides agressifs (acides, solvants, produits chimiques, etc.). Pour des applications en milieu rotatif, nous préconisons d'utiliser des matériaux tels que le FKM plutôt que le NBR. Pour un fonctionnement à sec ou à très faible lubrification dans le cas où les élastomères ne résistent pas à certains fluides agressifs, nous conseillons d'utiliser nos joints pour arbre tournant en PTFE.

Conception du joint

Tolérance du diamètre extérieur du joint (ØD)

Le tableau ci-dessous informe du pré-serrage des bagues d'étanchéité sur le diamètre du logement selon la norme ISO 6194-1.

Diamètre d'alésage
ØD1 (mm)
Tolérances sur le diamètre extérieur ØD de la bague Tolérance de circularité
Cage métallique apparente Revêtement en élastomère Revêtement avec bossage Cage métallique apparente Revêtement en élastomère
ØD1 ≤ 50,0 +0,10 / +0,20 +0,15 / +0,30 +0,20 / +0,40 0,18 0,25
50,0 < ØD1 ≤ 80,0 +0,13 / +0,23 +0,20 / +0,35 +0,25 / +0,45 0,25 0,35
80,0 < ØD1 ≤ 120,0 +0,15 / +0,25 +0,20 / +0,35 +0,25 / +0,45 0,30 0,50
120,0 < ØD1 ≤ 180,0 +0,18 / +0,28 +0,25 / +0,45 +0,30 / +0,55 0,40 0,65
180,0 < ØD1 ≤ 300,0 +0,20 / +0,30 +0,25 / +0,45 +0,30 / +0,55 0,25% de ØD  0,80
300,0 < ØD1 ≤ 500,0 +0,23 / +0,35 +0,30 / +0,55 +0,35 / +0,65 0,25% de ØD 1,00
500,0 < ØD1 ≤ 630,0 +0,23 / +0,35 +0,35 / +0,65 +0,40 / +0,75 - -
630,0 < ØD1 ≤ 800,0 +0,28 / +0,43 +0,40 / +0,75 +0,45 / +0,85 - -

Conception de l'arbre

Implantation arbre pour bague d'étanchéité

Matériau de l'arbre

Les matériaux appropriés sont :

  • les aciers courants dans la construction mécanique de type C35 et C45
  • les aciers inoxydables de type 1.4300 et 1.4112 pour l'étanchéité à l'eau
  • des projections de métal appliquées par lance plasma
  • le graphite
  • la fonte malléable
  • les matériaux avec un revêtement appliqué par les procédés CVD et PVD

Ne sont pas appropriés :

  • les couches de chrome solidifiées du fait de l'usure non uniforme
  • les matières plastiques du fait de la faible conductivité thermique qui peut entraîner une perturbation du transport de la chaleur, une augmentation de la température au niveau des zones de frottement avec la bague d'étanchéité, et aussi potentiellement un ramollissement

Dureté de l'arbre

La dureté de l'arbre va dépendre de la vitesse linéaire (en m/s) et du niveau de pollution.

Vitesse de rotation Dureté en HRC
v ≤ 4,0 m/s 45 HRC
4,0 < v ≤ 10,0 m/s 55 HRC
v > 10,0 m/s 60 HRC

Etats de surface

La qualité de surface de l'arbre doit tenir compte des recommandations ci-dessous.

Conditions standard :

  • Ra = 0,1 à 0,4 µm
  • Rz = 1,0 à 4,0 µm
  • Rmax ≤ 6,3 µm

Tolérance de l'arbre

L'arbre doit être de tolérance h11 selon la norme ISO 286-2

Diamètre de l'arbre
Ød1 (mm)
Tolérance
h11 (mm)
Ød1 ≤ 3,0 -0,060 / 0
3,0 < Ød1 ≤ 6,0 -0,075 / 0
6,0 < Ød1 ≤ 10,0 -0,090 / 0
10,0 < Ød1 ≤ 18,0 -0,110 / 0
18,0 < Ød1 ≤ 30,0 -0,130 / 0
30,0 < Ød1 ≤ 50,0 -0,160 / 0
50,0 < Ød1 ≤ 80,0 -0,190 / 0
80,0 < Ød1 ≤ 120,0 -0,220 / 0
120,0 < Ød1 ≤ 180,0 -0,250 / 0
180,0 < Ød1 ≤ 250,0 -0,290 / 0
250,0 < Ød1 ≤ 315,0 -0,320 / 0
315,0 < Ød1 ≤ 400,0 -0,360 / 0
400,0 < Ød1 ≤ 500,0 -0,400 / 0

Chanfrein et Rayon

Pour ne pas altérer la lèvre primaire de la bague d'étanchéité lors du montage, il est vivement conseillé de prévoir un chanfrein sur l'arbre. Veuillez-vous référer au tableau ci-dessous.

Diamètre de l'arbre
Ød1 (mm)
Diamètre du chanfrein
Ød3 (mm)
Rayon
R (mm)
Ød1 ≤ 10,0 Ød1 - 1,50 2,00
10,0 < Ød1 ≤ 20,0 Ød1 - 2,00 2,00
20,0 < Ød1 ≤ 30,0 Ød1 - 2,50 3,00
30,0 < Ød1 ≤ 40,0 Ød1 - 3,00 3,00
40,0 < Ød1 ≤ 50,0 Ød1 - 3,50 4,00
50,0 < Ød1 ≤ 70,0 Ød1 - 4,00 4,00
70,0 < Ød1 ≤ 95,0 Ød1 - 4,50 5,00
95,0 < Ød1 ≤ 130,0 Ød1 - 5,50 6,00
130,0 < Ød1 ≤ 240,0 Ød1 - 7,00 8,00
240,0 < Ød1 ≤ 500,0 Ød1 - 11,00 12,00

Battement de l'arbre

Le battement de l'arbre correspond à une déviation entre l'axe réel de l'arbre et l'axe théorique de rotation. Il est important de réduire au maximum le battement de l'arbre en positionnant la bague d'étanchéité au plus près du roulement. Le tableau ci-dessous décrit les valeurs maximales admissibles en fonction de la vitesse de rotation et le matériau de la lèvre d'étanchéité.

Battement de l'arbre pour bague d'étanchéité

Excentricité

L'arbre et le logement doivent être montés centrés l'un par rapport à l'autre afin d'éliminer toute charge radiale unilatérale au niveau de la lèvre d'étanchéité de la bague.

Excentricité pour bague d'étanchéité avec lèvre PTFE

Usinage de l'arbre

L'usinage correct de l'arbre est un élément primordial pour un bon fonctionnement du système d'étanchéité.

  • Rectification en plongée : méthode d'usinage privilégiée assurant l'absence de stries sur l'arbre (0 +/- 0,05°)
  • Tournage : adapté sur des arbres utilisés avec un sens de rotation unidirectionnel

Directives d'usinage pour la rectification des surfaces

Paramètres Exigence
Vitesse de la pièce à usiner 30 à 300 tr/min
Vitesse de la meule 1500 à 1700 tr/min
Avance de dressage < 0,02 mm/tour
Outil de dressage diamant de dressage à grains multiples, diamant de dressage à un seul grain
Avance de la meule environ 0,02 mm
Durée d'étincelage étincelage complet, 30 sec. mini
Profondeur de passe > Rmax de l'ancienne opération d'usinage
Coaxialité de l'outil et de la pièce à usiner la meilleure possible

Conception du logement

Implantation logement pour bagues d'étanchéité

Etats de surface

La qualité de surface du logement doit tenir compte des recommandations ci-dessous.

Conditions standard pour les bagues avec cage métallique apparente :

  • Ra = 0,8 à 3,2 µm
  • Rz = 6,3 à 16,0 µm
  • Rmax ≤ 16,0 µm

Tolérance du diamètre d'alésage du logement

Le diamètre d'alésage du logement doit être de tolérance H8 selon la norme ISO 286-2

Diamètre d'alésage
ØD1 (mm)
Tolérance
H8 (mm)
3,0 < ØD1 ≤ 6,0 0 / +0,018
6,0 < ØD1 ≤ 10,0 0 / +0,022
10,0 < ØD1 ≤ 18,0 0 / +0,027
18,0 < ØD1 ≤ 30,0 0 / +0,033
30,0 < ØD1 ≤ 50,0 0 / +0,039
50,0 < ØD1 ≤ 80,0 0 / +0,046
80,0 < ØD1 ≤ 120,0 0 / +0,054
120,0 < ØD1 ≤ 180,0 0 / +0,063
180,0 < ØD1 ≤ 250,0 0 / +0,072
250,0 < ØD1 ≤ 315,0 0 / +0,081
315,0 < ØD1 ≤ 400,0 0 / +0,089
400,0 < ØD1 ≤ 500,0 0 / +0,097
500,0 < ØD1 ≤ 630,0 0 / +0,110

Largeur du logement

Le tableau ci-dessous informe sur la largeur de gorge préconisée.

Hauteur
H1 (mm)
Largeur
L2min (mm) L1min (mm)
7,00 5,95 7,50
8,00 6,80 8,50
10,00 8,50 11,00
12,00 10,30 13,00
15,00 12,75 16,00
20,00 17,00 21,00

 

Rayon du logement

Le tableau ci-dessous informe sur le rayon préconisé.

Hauteur
H1 (mm)
Rayon
R2 max (mm)
7,00 0,50
8,00
10,00
12,00 0,70
15,00
20,00

Uniquement sur demande